We are the Environment Agency. We protect and improve the environment and make it a better place for people and wildlife.

We operate at the place where environmental change has its greatest impact on people’s lives. We reduce the risks to people and properties from flooding; make sure there is enough water for people and wildlife; protect and improve air, land and water quality and apply the environmental standards within which industry can operate.

Acting to reduce climate change and helping people and wildlife adapt to its consequences are at the heart of all that we do.

We cannot do this alone. We work closely with a wide range of partners including government, business, local authorities, other agencies, civil society groups and the communities we serve.
Contents

1 Introduction 1
   1.1 Coastal morphology technical note 1
   1.2 Anglian Coastal Monitoring 1
   1.3 Survey area 1
   1.4 Data collection & survey dates 3

2 Survey data outputs & results 4
   2.1 Introduction 4
   2.2 Analysis 4

3 Summary 22

Appendix A 23

References 24

Glossary 25

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Survey campaigns and dates</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ACM strategic (1 km) survey transects. Transect ID code and previously known ID codes.</td>
<td>23</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of 1 km survey transects</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Difference model showing change in beach elevation between winter 2013 and 2012 at Mablethorpe</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Profile at L044 in January 2013, showing the changes since July 2012</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Difference model showing change in beach elevation between winter 2013 and 2012 at Moggs Eye</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Difference model showing change in beach elevation between 2012 and winter 2011 at Moggs Eye to Chapel Six Marshes</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Profile at L047 in January 2013, showing the changes since July 2012</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Difference model of change in beach elevation between winter 2013 and 2012 at Chapel St Leonards</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Plot showing the changes in elevation in January 2013 (green) compared to a baseline level of August 2012 (blue) along the transect L051</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Aerial photography in May 2012 of the frontage at transect L051</td>
<td>11</td>
</tr>
<tr>
<td>2.9</td>
<td>Difference model showing change in beach elevation between winter 2013 and 2012 at the Ingoldmells frontage</td>
<td>13</td>
</tr>
<tr>
<td>2.10</td>
<td>Cross section of transect MB472, located half way between transects L058 and L059</td>
<td>14</td>
</tr>
<tr>
<td>2.11</td>
<td>Difference model showing change in beach elevation between winter 2013 and 2012 at Skegness</td>
<td>15</td>
</tr>
<tr>
<td>2.12</td>
<td>Difference model showing change in beach elevation between 2013 and 2011 at Mablethorpe</td>
<td>16</td>
</tr>
<tr>
<td>2.13</td>
<td>Difference model showing change in beach elevation between 2013 and 2011 at Moggs Eye to Anderby Creek.</td>
<td>17</td>
</tr>
<tr>
<td>2.14</td>
<td>Differences in the beach profile at transect L049, over the last 3 surveys compared to the beach in June 2011</td>
<td>18</td>
</tr>
<tr>
<td>2.15</td>
<td>Difference model showing change in beach elevation between 2013 and 2011 at Chapel St. Leonards</td>
<td>19</td>
</tr>
<tr>
<td>2.16</td>
<td>Difference model showing change in beach elevation between 2013 and 2011 at Ingoldmells</td>
<td>20</td>
</tr>
<tr>
<td>2.17</td>
<td>Difference model showing change in beach elevation between 2013 and 2011 at Skegness</td>
<td>21</td>
</tr>
</tbody>
</table>

List of Photos

<table>
<thead>
<tr>
<th>Photo</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>View looking up the beach, along the length of transect L039 in July 2012</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>View looking seaward along Transect L043 at Sandlands in July 2012</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Aerial photograph of the beach at transect L048, showing the outfall and the dry sand on the upper beach and the wet sand with channels running out to sea on the lower beach. Photo from 26 May 2012</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Channels running out from pools of standing water on the lower beach at transect L058</td>
<td>12</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Coastal morphology technical note

This technical note is an update to the previous year’s reporting on the frontage (Environment Agency 2011; 2012), which in turn has been an update to the Environment Agency (2008) Coastal Trends Report, Lincolnshire (Subcells 2b-c – Grimsby to Gibraltar Point).

The aim of this report is to present the survey data collected along the southern Lincolnshire coast and to provide an assessment of beach movement along the frontage since the previous winter survey. Changes through sediment movement, resulting in either depletion or accretion and areas of stability where sediment has been retained, are identified from topographic surveys. These changes are associated with natural coastal processes and renourishment activities.

The purpose of this report is twofold, serving as both as an indicator of where to target resources and renourishment activity, but also as a mechanism to determine the effectiveness of the previous year’s nourishment activity.

1.2 Anglian Coastal Monitoring

The Environment Agency (EA) Shoreline Monitoring Group (SMG) leads the Anglian Coastal Monitoring (ACM) programme undertaking regular strategic coastal monitoring of the Anglian coast since 1991. The rationale behind the programme is to assist the implementation of appropriate and sustainable works on the coast, whether these are works undertaken by the EA or coastal protection partners, for the purpose of flood and erosion risk management. In addition, a further output from the monitoring programme is the assessment of coastal dynamics to inform long-term strategic plans for the coastline. The vehicle for this is the Shoreline Management Plan (SMP) process.

Undertaking monitoring activities on the Lincshore frontage provides survey datasets and enables improved understanding which benefits forecasting of morphodynamics and planned management actions. Coastal survey data gathered as part of the ACM is available from the SMG and can be requested by emailing ACM@environment-agency.gov.uk. Topographic surveys used in this technical note are outlined in the Data section (1.4) below and are depicted in (overleaf).

1.3 Survey area

The Lincshore scheme covers the frontage from Donna Nook to Gibraltar Point. Six ‘coastal process analysis zones’ and 15 coastal cells have been identified within this area and are used by the projects’ managing consultant to determine renourishment needs. The extent of renourishment works to date is within the area just north of Mablethorpe to Skegness.

The Anglian Coastal Monitoring programme has discrete monitoring cells at Donna Nook, Mablethorpe to Skegness and Gibraltar Point, which extend to the south of Skegness. For a description of the Lincolnshire frontage and the coastal processes and morphology of the area refer to Environment Agency (2008; 2011) reports.
Figure 1.1: Location of 1 km survey transects
1.4 Data collection & survey dates

Topographic surveys of strategic 1 km transects are carried out every summer and winter along the Anglian coast. In addition, more intensive monitoring occurs along the Lincshore frontage. This includes the use of quad bikes to take spot elevation measurements between transect lines. In the latest phase of the ACM programme, multibeam hydrographic data was collected in 2011 from the low water to 1 km offshore. An airborne LiDAR survey of the Lincshore coastline occurred in December 2012 and will be included in future notes.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Survey</th>
<th>Date</th>
</tr>
</thead>
</table>
| 2013 (Winter) | EA 1km transects  
EA 50m/MB transects  
EA quad & non-quad spot heights | 10-15 & 24-26 January, 07 February  
10-11, 14-15 & 24 January  
10-15 January, 07 & 09 February |
| 2012 (Summer) | EA 1km transects  
EA 50m/MB transects | 20-22 & 30-31 July, 01-03 August  
20 & 30-31 July, 01-02 August |
| 2012 (Winter) | EA 1km transects  
EA 50m/MB transects  
EA quad & non-quad spot heights | 7-14 December  
7-14 December, 7-13 & 21-23 January |
| 2011 (Summer) | EA 1 km transects  
EA MB transects  
EA 50 m transects  
EA hydrographic survey | 1 June - 3 July (2 September Gibraltar Pt)  
15 June - 3 July  
1 June - 3 July  
27 July – 1 November |
| 2011 (Winter) | EA 1km transects  
EA MB transects  
EA 50 m transects  
EA quad & non-quad spot heights  
EA recharge (Areas 1-6) 25m transects | 17-23 January  
17-21 January  
31 January - 3 February  
31 January - 4 February  
18 January - 21 January & 31 January - 1 February |
| 2010 (Summer) | EA 1km transects  
EA MB transects  
DI recharge in-survey (Area 1) 25m transects  
DI recharge in-survey (Areas 2 - 6) 25m transects | 10-13 July  
12-13 July  
July  
August |
| 2010 (Winter) | EA 1km transects  
EA MB transects | 14-18 January  
16-18 January |

Table 1: Survey campaigns and dates

Table 1 lists survey data collected since winter 2010 and the dates that each survey was undertaken. Between summer 2010 and summer 2011 six areas of beach were recharged and additional transect surveys undertaken to monitor beach levels at these locations.
2 Survey data outputs & results

2.1 Introduction

This section describes the current state of the beach and changes that have occurred in the last year and before renourishment activities commence in spring 2013. The following sections show the difference in the beach from last winter and 2011.

To facilitate this analysis, two difference models were created in a Geographic Information System (GIS): (i) one that depicts changes in beach morphology over the last year and in between transect surveys. This model was created by subtracting this year’s surveys from the last. (ii) a model of the changes since 2011 and over the dataset of spot heights collected to date. The resultant maps identify changes in elevation, where sediment is accumulating, moving and/or where sediment is depleting. The following sections describe the observed results and identify any areas or hot spots of continued erosion or accretion.

2.2 Analysis

2.2.1 Changes from 2012

A similar movement of sediment as seen last year is again observed between ridges at the beach north of Mablethorpe (Figure 2, label A). Alongshore ridges continue to develop between long depressions that pool water on the beach. The beach is backed by dunes and sheltered by the bank that extends south to this point. To the south and from Trusthorpe the coast is more exposed to waves crossing the Trusthorpe Overfalls.

The Mablethorpe area between transects L038 and L039 shows little change this year. The beach appears to have maintained a good portion of the upper beach that developed from L038 to L040 at Trusthorpe the previous year. At Trusthorpe, the mid foreshore (where pooling occurs) has eroded by an average of 0.4 m in elevation. The area around Trusthorpe is currently renourished on an annual basis. The Mablethorpe section is identified as a low priority area that could receive 22,000 m$^3$ of sediment. While to the south from L039 and along the Trusthorpe frontage is considered a higher priority with 102,000 m$^3$ recommended (Halcrow, 2013).

Photo 1: View looking up the beach, along the length of transect L039 in July 2012 (Photo: EA)
Figure 2.1: Difference model showing change in beach elevation between winter 2013 and 2012 at Mablethorpe

South of Trusthorpe (L040 to L044), pooling of water and channels cutting through the lower beach are a feature of this stretch. At points the beach has dropped over a metre in front of Sutton-on-Sea. These depressions are surrounded by stable areas where the beach has not changed. At the low water, the beach from Sutton to Sandilands has accreted. Halcrow have recommended 53,000 m$^3$ at the frontage of Sandilands golf course and 77,000 m$^3$ extending south to Moggs Eye (Halcrow, 2013).
Photo 2: View looking seaward along Transect L043 at Sandilands in July 2012 (Photo: EA)

Figure 2.2: Profile at L044 in January 2013, showing the changes since July 2012 (grey profile), Green denotes accretion and red erosion on the profile.
At Moggs Eye there is observed erosion from the upper to mid foreshore which is at a significantly higher elevation to the lower foreshore. The beach berm is at 4 mODN, then beach then falls to below 0 mODN within 50m and extends a further 100m at this low elevation.

At Anderby Creek between L047 and L048 the beach has remained stable, and the berm has grown. On the lower beach again, channels develop and run out through the
beach to the North sea. At transect L048 the outfall pipe channel divides the beach and an island of accretion to the north and a drop in the beach level to the south is observed (Figure 2.4, label B).

Coastal Morphology Technical Note
Lincshore

Figure 2.4: Difference model showing change in beach elevation between 2012 and winter 2011 at Moggs Eye to Chapel Six Marshes
Figure 2.5: Profile at L047 in January 2013, showing the changes since July 2012 (grey profile). Green denotes accretion and red erosion on the profile.

Photo 3: Aerial photograph of the beach at transect L048, showing the outfall and the dry sand on the upper beach and the wet sand with channels running out to sea on the lower beach. Photo from 26 May 2012 (Photo: EA).

Wolla Bank and Chapel Six Marshes have been renourished every year for the past six years. There has been a significant loss of sediment on the upper beach and mid beach around transect L049. The difference model shows a drop in elevation of 1.4 m in places where the berm has retreated. Halcrow have recommended 112,000 m$^3$ of sand to renourish the Chapel Six Marshes from L048 to L051 at Chapel Point (Halcrow, 2013).

On the north side of the Chapel Point, from transects L050 the beach berm has actually accreted this year, and there has been stability or growth in much of the lower beach. The hard point at Chapel Point continues to lose sediment (Figure 2.6, label C). The beach around the point is less than 200 m in width and has a long trend of erosion and failure to retain sediment.
Similar to the one kilometre stretch to the north, there has been growth in the beach on the south side. However, this is offset by the significant pooling in the area. This is the case moving south where sediment gain on the berm is offset with loss through the channels and pooling on the lower beach (Figure 2.6, label D).
Figure 2.7: Plot showing the changes in elevation in January 2013 (green) compared to a baseline level of August 2012 (blue) along the transect L051. The profile has accreted either side of a pool and loss of sediment at 200 – 250 m chainage along the transect.

Figure 2.8: Aerial photography in May 2012 of the frontage at transect L051, the image on the right shows the area with the difference model showing changes from winters 2013 and 2012. The blue patch is growth on the berm while the red is sediment loss from the lower beach.
South of Chapel St Leonards there has been significant erosion of the berm and the beach in front of the berm from L052 to L054 and at the shoreline. In front of the caravan park some of the losses to the berm have been balanced by growth on the lower beach. This area has been identified by Halcrow to receive 62,000 m$^3$ of renourishment.

At Ingoldmells, north of the point, there has been significant erosion. This is clearly seen in the profile survey of transect L054. At Ingoldmells itself and the area between Vickers Point and L058 at Seathorpe there has been growth of the beach. Along the southern frontage from L056 to L058 this growth has been patchy, with increased beach height alongside areas of pooling and lowering of the beach.

Photo 4: Channels running out from pools of standing water on the lower beach on 2nd August 2012 at transect L058 located at Seathorpe (Photo: EA)
Figure 2.9: Difference model showing change in beach elevation between winter 2013 and 2012 at the Ingoldmells frontage

South of Ingoldmells there has been significant erosion in the upper beach along the stretch from L058 to L059. Here the berm has retreated back, and the difference model shows a drop of 2 m in elevation.
Figure 2.10: Cross section of transect MB472, located half way between transects L058 and L059. The blue line shows the beach profile in December 2011, the green line is the beach profile in August 2012 and the red line is the beach profile in January 2013.

The lower beach here and towards Skegness remains stable. There is growth in the upper beach by the Sea View area, likely associated to the loss of the upper beach to the north. There has been significant loss from the berm on the beach to the north of the pier (Figure 2.11, label E) and erosion to the south down to Lagoon Walk.
Figure 2.11: Difference model showing change in beach elevation between winter 2013 and 2012 at Skegness.
2.2.2 Changes from 2011

The following section presents the results of the difference model of the 2013 survey and the 2011 surveys, and highlights some of the consistent erosion or accretion patterns and areas.

Coastal Morphology Technical Note
Lincshore

Figure 2.12 Difference model showing change in beach elevation between 2013 and 2011 at Mablethorpe.

Figure 2.12 shows the development of the ridge and elongated pools in front of the dunes at Mablethorpe. The sediment movements seem to be contained to the beach.
although interaction with the nearshore bank is not clear. The southern section of Mablethorpe shows a growth in the upper beach with a stable lower beach area.

Coastal Morphology Technical Note
Lincshore

Figure 2.13: Difference model showing change in beach elevation between 2013 and 2011 at Moggs Eye to Anderby Creek.

Due to the low elevation of the beach along the frontage from Moggs Eye to Chapel Six Marshes it is washed out by the tides over the year. This beach has standing water that pools on the beach and that is slow to percolate through the sand and drain through
the channels leading out to sea. The difference model (Figure 2.13) does show growth in the beach berm around Anderby Creek. Chapel Six Marshes is currently renourished annually, and although there is growth on the upper berm and lower beach. The pooling in this area has created some of the greatest loss in beach height in the mid beach section as shown in the profile plot of L049.

**Figure 2.14**: Differences in the beach profile at transect L049, over the last 3 surveys compared to the beach in June 2011. The plot shows the lowering (red area) of the mid beach over the past few years.
A similar trend is seen along the Chapel St. Leonards frontage. Renourishment is being retained on the upper beach with growth in the berm; however, pooling on the lower beach is resulting in a loss of sediment. The changes observed over the last year are the same as those shown in the difference s over the three annual surveys.
At Ingoldmells there has been a level of beach stability and overall growth in the upper beach. However to the south from the transect L056 and the holiday village, the beach widens and there is the same pattern as to the north with pooling and continued sediment loss from the low elevation section of the beach. Photo 4 (p.12) illustrates the difference in height of the upper and lower beach in this area and shows the pooling and drainage channels on the lower section.
Figure 2.17: Difference model showing change in beach elevation between 2013 and 2011 at Skegness.

The upper beach north of Skegness continues to lose sediment where it is most likely moving south and where growth on the upper beach is observed in surveys at L060. South of this, the upper beach to the north of the pier is showing regular sediment loss. The lower beach at Skegness is however more stable than the lower beach sections on the frontages to the north. Around Lagoon walk the beach is relatively stable with patchy erosion on the upper beach and accumulations along the marsh land to the south of Skegness at transect L062.
3 Summary

The topographic surveys and the difference models depict the annual changes in the beach from Mablethorpe to Skegness. As the datasets collected by ATV surveys extend, patterns in the beach development can be observed. The surveys show the patchy nature of the overall erosion trend along the Lincolnshire coast.

There is a continued trend in pooling of water on the beach leading to long depressions that stretch alongshore on the lower beach. There are also island features created on the lower beach where channels are cut by water running off the beach. There is sediment accumulation in places and growth is occurring on the beach berm; this is not a redistribution of sediment from the lower beach to the berm, rather, renourished material is being retained in areas along the berm. The sea continues to cut pools and channels through the very low lying beach areas and wash sediment off the shoreline.

The hydrographic data and survey carried out last year revealed some of the nearshore features and potential receptors of the renourished material. Further surveys of these features are required to identify how they develop in response to the onshore nourishment and changes to the beach.

To determine how long the sediment is being retained on the beach, or how the sediment is lost, its movement along the beach and where sediment is lost offshore, there is a requirement for increased temporal topographic surveys. A survey shortly following the renourishment, a high wave period and high spring tide event would be useful to provide a greater evidence base. Sediment sampling to determine the grain size and composition of the beach that is most mobile or remains in-situ on the beach longest would also be valuable in management and renourishment planning.
## Appendix A

<table>
<thead>
<tr>
<th>Transect ID</th>
<th>Old transect ID</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>L035</td>
<td>L2D1</td>
<td>P1 Theddlethorpe</td>
</tr>
<tr>
<td>L036</td>
<td>L2D2</td>
<td>P2</td>
</tr>
<tr>
<td>L037</td>
<td>L2D3</td>
<td>P6 Mablethorpe</td>
</tr>
<tr>
<td>L038</td>
<td>L2D4</td>
<td>P10</td>
</tr>
<tr>
<td>L039</td>
<td>L2D5</td>
<td>P14</td>
</tr>
<tr>
<td>L040</td>
<td>L2D6</td>
<td>P18 Trusthorpe</td>
</tr>
<tr>
<td>L041</td>
<td>L2D7</td>
<td>P22</td>
</tr>
<tr>
<td>L042</td>
<td>L2D8</td>
<td>P28 Sutton On Sea</td>
</tr>
<tr>
<td>L043</td>
<td>L2C1</td>
<td>P30</td>
</tr>
<tr>
<td>L044</td>
<td>L2C2</td>
<td>P34</td>
</tr>
<tr>
<td>L045</td>
<td>L2C3</td>
<td>P38</td>
</tr>
<tr>
<td>L046</td>
<td>L2C4</td>
<td>P42</td>
</tr>
<tr>
<td>L047</td>
<td>L2C5</td>
<td>P48</td>
</tr>
<tr>
<td>L048</td>
<td>L2C6</td>
<td>P50 Anderby Creek</td>
</tr>
<tr>
<td>L049</td>
<td>L2C7</td>
<td>P54</td>
</tr>
<tr>
<td>L050</td>
<td>L2C8</td>
<td>P58 Chapel Point</td>
</tr>
<tr>
<td>L051</td>
<td>L2B1</td>
<td>P62 Chapel St Leonards</td>
</tr>
<tr>
<td>L052</td>
<td>L2B2</td>
<td>P66</td>
</tr>
<tr>
<td>L053</td>
<td>L2B3</td>
<td>P70</td>
</tr>
<tr>
<td>L054</td>
<td>L2B4</td>
<td>P74 Vickers Point</td>
</tr>
<tr>
<td>L055</td>
<td>L2B5</td>
<td>P78 Ingoldmells Point</td>
</tr>
<tr>
<td>L056</td>
<td>L2B6</td>
<td>P82</td>
</tr>
<tr>
<td>L057</td>
<td>L2B7</td>
<td>P86</td>
</tr>
<tr>
<td>L058</td>
<td>L2B8</td>
<td>P90</td>
</tr>
<tr>
<td>L059</td>
<td>L2A1</td>
<td>P94</td>
</tr>
<tr>
<td>L060</td>
<td>L2A2</td>
<td>P98</td>
</tr>
<tr>
<td>L061</td>
<td>L2A3</td>
<td>Skegness</td>
</tr>
<tr>
<td>L062</td>
<td>L2A4</td>
<td></td>
</tr>
<tr>
<td>L063</td>
<td>L2A5</td>
<td></td>
</tr>
<tr>
<td>L064</td>
<td>L2A6</td>
<td></td>
</tr>
<tr>
<td>L065</td>
<td>L2A7</td>
<td></td>
</tr>
<tr>
<td>L066</td>
<td>L2A8</td>
<td></td>
</tr>
<tr>
<td>L067</td>
<td>L3D5</td>
<td></td>
</tr>
</tbody>
</table>

**Table 2:** ACM strategic (1 km) survey transects. Transect ID code and previously known ID codes.
References


Glossary

Accretion
The accumulation of sediment on a beach by the action of natural forces or as a result of man-made artificial structures.

Bathymetry
The topographic relief of the sea bed.

Chainage
The distance along a topographic survey transect line, measured in metres.

Erosion
The process of eroding or being eroded by wind, water, or other natural agents.

Foreshore
The area of beach lying between high water and low water.

Hydrographic
The science, description and analysis of the physical conditions, boundaries, flow, and related characteristics of the earth's surface waters.

LiDAR
Light Detection And Ranging, the remote sensing method of measuring elevation through light pulses, often using a laser and usually from an aircraft.

Longshore drift
Movement of sediment along the shoreline.

MHWS
Level of Mean High Water Spring tides.

MHWN
Level of Mean High Water Neap tides.

MLWN
Level of Mean Low Water Neap tides.

MLWS
Level of Mean Low Water Spring tides.

MSL
Mean Sea Level.

Onshore
Situated or occurring on land.

Offshore
Situated or occurring in the sea beyond the depth of closure.

Renourishment
A management practise of adding to the natural amount of sediment on a beach with material from elsewhere. This is also known as beach replenishment, recharge or feeding.

SMP
Shoreline Management Plan.

Transect
A straight line section across a surface or feature, along which observations are made.
Would you like to find out more about us, or about your environment?

Then call us on
03708 506 506 (Mon-Fri 8-6)
Calls to 03 numbers cost the same as calls to standard geographic numbers (i.e. numbers beginning with 01 or 02).

email
enquiries@environment-agency.gov.uk

or visit our website
www.environment-agency.gov.uk

incident hotline 0800 80 70 60 (24hrs)
floodline 0845 988 1188